

# Considerations in Source PM<sub>2.5</sub> Measurement Methodology Development for Industrial Combustion Emissions

S. Win Lee, Ian He and B. Young CANMET Energy Technology Centre Natural Resources Canada Ottawa, Canada K1A 1M1

Conference on 
"PM<sub>2.5</sub> and Electric Power Generation:
Recent Findings and Implications"
DOE/NETL

April 9-10, 2002, Pittsburgh, PA







#### Fine PM Emission Research Consortium

- Environment Canada
- Ontario Power Generation
- TransAlta Corporation
- Natural Resources Canada
- 3-phase program
  - Oil-fired boiler
  - Pilot-scale coal-fired boiler
  - Field-ready for utility boilers



# **Technical Challenges**

- Simulation of plume conditions
- Isokinetic sampling & automatic control
- Ambient comparable PM analysis
- Field suitability
- Integrity of emission data



#### **Simulation of Plume Conditions**

- Source dilution is common approach
- 20-40 times provides ambient-like temperatures
- Larger dilution requires large system, impractical
- Limited study showed positive effect of dilution on PM mass
- What about NH<sub>3</sub> and UV ?



# Isokinetic Sampling & Automatic Control

- Stack velocity to accommodate varying unit sizes
- Residence time vs dilution ratio vs tunnel size
- Turbulent mixing of flue gas and dilution air
- Automatic control and balance of flows that are very different in magnitude
- Accurate measurement of dilution ratio
- On-line RH control
- Dilution air supply and pre-cleaning







#### **CETC Source Dilution Sampling System 1**





# CETC Source Dilution System 2



# CETC CANMET Energy Technology Centr





#### **Teflon Surface Coating**

# **Materials** - DuPont PTFE DuPont FEP

Nonporous films

Excellent chemical resistance

Low friction

Nonstick properties

Liquid forms



# **SO<sub>2</sub> Surface Loss Tests**

|                                     | CETC 2         | CETC 1     |
|-------------------------------------|----------------|------------|
| Relative Humidity                   | 47%            | 48%        |
| Inlet SO <sub>2</sub> Concentration | <b>5.6 ppm</b> | 4.7 ppm    |
| <b>Residence Time</b>               | 1 min          | 1 min      |
| Sampling Interval                   | Continuous     | 5 min      |
| #1                                  | 4.8% to 0%     | 9.3 % loss |
| #2                                  | Loss within    | 5.9% loss  |
| #3                                  | 20 min         | 0.9% loss  |



# NO<sub>x</sub> Loss Tests

|                                     | CETC 2        | CETC 1        |
|-------------------------------------|---------------|---------------|
| Relative Humidity                   | 47%           | 48%           |
| Inlet NO <sub>X</sub> Concentration | 5.6%          | 5.8%          |
| Residence time                      | 1 min         | 1 min         |
| Sampling interval                   | Continuous    | Continuous    |
| Loss                                | 3.5% to 0%    | 6.1% to 0%    |
| Loss                                | Within 15 min | Within 16 min |



# **System Capabilities**

| Parameters              | CETC 1  | CETC 2     |
|-------------------------|---------|------------|
| Stack Velocity (m/s)    | up to 3 | up to 10   |
| Tunnel Temperature (°C) | 18-40   | 18-40      |
| Relative Humidity (%)   | 20-80   | 20-80      |
| Dilution Ratio          | 40x     | up to 100x |
| Residence Time (s)      | 15-25   | 40-80      |



#### **Schematic of Pilot-Scale Coal-Fired Boiler**





#### **Sample Collection and Analysis Procedure**





### **TEM Images – PM<sub>2.5</sub> Agglomerate for No. 2 Fuel Oil**





Field Image X 5K

X 60K



#### PM Size Distribution from No. 4 Fuel Oil Combustion

0.7% sulphur, 40% RH, 26x dilution





# PM mass loading for No.4 fuel (mg/cm<sup>3</sup>) Trial Runs

| Run                                     | 1   | 2  | 3    | 4  | M 5 | RSD (%) |
|-----------------------------------------|-----|----|------|----|-----|---------|
| Loading                                 |     |    |      |    |     |         |
| PM <sub>2.5</sub> , mg/m <sup>3</sup>   | 61  | 62 | 62   | 63 | NA  | 1.0     |
| PM <sub>10</sub> , mg/m <sup>3</sup>    | 77  | 76 | 74   | 72 | NA  | 2.8     |
| PM <sub>Total</sub> , mg/m <sup>3</sup> | 76  | 76 | 73   | 73 | 40  | 2.5     |
| Insoluble Losses                        |     |    |      |    |     |         |
| Probe, mg/m <sup>3</sup>                | 3.9 |    | 3.8  |    | 2.5 | 1.8     |
| Mixing Chamber, mg/m <sup>3</sup>       | 5   |    | 11.6 |    | NA  | 56.2    |
| Filter Pack, mg/m <sup>3</sup>          | 4.7 |    | 2.8  |    | NA  | 35.8    |

**RSD: Relative Standard Deviation** 



## Field suitability

8 Modules for portability

Light weight, surface coated Aluminum

Portable clean/dry air system

Data acquisition and control software

Adjustable support frame



### PM Mass Balance (mg/m³)

40X dilution, 40% R.H.

| Fuel                               |                         | PM <sub>2.5</sub> | PM <sub>10</sub> | PM <sub>Total</sub> |
|------------------------------------|-------------------------|-------------------|------------------|---------------------|
|                                    | Metal as oxides         | 0.03              | 0.02             | 0.02                |
| 0.05% S                            | Organic carbon          | 0.71              | 0.71             | 0.68                |
| Diesel                             | Elemental carbon        | 1.00              | 1.03             | 1.03                |
| 30 kW Boiler                       | Sulphate & Hydration    | 0.57              | 0.51             | 0.51                |
| 30 KW Boller                       | By composition analysis | 2.31              | 2.27             | 2.24                |
|                                    | By gravimetry           | 1.93              | 2.09             | 2.09                |
| 0.20% S<br>#2 Fuel<br>30 kW Boiler | Metal as oxides         | 0.10              | 0.09             | 0.09                |
|                                    | Organic carbon          | 1.24              | 1.27             | 1.12                |
|                                    | Elemental carbon        | 0.69              | 0.73             | 0.76                |
|                                    | Sulphate & Hydration    | 4.69              | 4.90             | 5.76                |
|                                    | By composition analysis | 6.72              | 6.99             | 8.06                |
|                                    | By gravimetry           | 9.76              | 9.86             | 9.80                |



# PM Mass Balance (mg/m³) - Continued 40X dilution, 40% R.H.

| Fuel          |                         | PM <sub>2.5</sub> | PM <sub>10</sub> | PM <sub>Total</sub> |
|---------------|-------------------------|-------------------|------------------|---------------------|
|               | Metal as oxides         | 2.77              | 4.89             | 5.50                |
| 0.70% S       | Organic carbon          | 13.10             | 14.81            | 12.44               |
| #4 Fuel       | Elemental carbon        | 4.22              | 11.65            | 14.27               |
| 130 kW Boiler | Sulphate & Hydration    | 10.10             | 10.73            | 12.73               |
| 130 KW Boller | By composition analysis | 30.19             | 42.08            | 44.94               |
|               | By gravimetry           | 34.23             | 43.54            | 50.33               |
|               | Metal as oxides         | 31.00             | 86.00            | 99.00               |
| 0.23% S       | Organic carbon          | 3.00              | 4.00             | 4.00                |
| Bituminous C  | Elemental carbon        | 0.00              | 0.00             | 0.00                |
| Coal          | Sulphate & Hydration    | 2.00              | 2.00             | 2.00                |
| 0.7 MW Boiler | By composition analysis | 36.00             | 92.00            | 106.00              |
|               | By gravimetry           | 38.00             | 77.00            | 91.00               |



#### **Possible PM Losses**

- Condensation at the probe tip inside the dilution tunnel
- Deposition on dilution tunnel surfaces (static, acids)
- Mixing zone losses (poor mixing, condensation, static)
- Deposition on filter pack (static)



#### **Data Validation**

- Source dilution PM data scarce at present
- Urgent regulatory requirement and time constraints
- CANMET protocol still evolving and areas to verify
- Reproducibility and PM mass balance very good
- Will improve to reduce PM losses
- Calibration using particle generator
- Coal boiler and field testing this year



## **Ongoing Work**

- Further minimize system PM losses
- Incorporate flue splitter for stacks with velocity >10 m/s
- NH<sub>3</sub> introduction to the system
- Validate data
- Initial field trial before further modification of the system